

Work, Energy and Power

Q.No.1:

This question has statement I and statement II. Of the four choices given after the statements, choose the one that best describes the two statements. **Statement – I:** A point particle of mass m moving with speed v collides with stationary point particle of mass M. if the maximum energy loss possible is

given as
$$f\left(\frac{1}{2}m\nu^2\right)$$
 then $f = \left(\frac{m}{M+m}\right)$.

Statement – II : Maximum energy loss occurs when the particles get stuck together as a result of the collision.

- **JEE 2013**
- **A.** Statement I is true, Statement II is true, Statement II is a **correct** explanation of Statement I.
- B. Statement I is true, Statement II is true, Statement II is not a correct explanation of Statement I.
- **C.** Statement I is true, Statement II is false.
- **D.** Statement I is false, Statement II is true.

Q.No.2: When a rubber-band is stretched by a distance x, it exerts a restoring force of magnitude $F = ax + bx^2$, where a and b are constants. The work done in stretching the unstretched rubber-band by L is

A.
$$\frac{aL^2}{2} + \frac{bL^3}{3}$$

B. $\frac{1}{2} \left(\frac{aL^2}{2} + \frac{bL^3}{3} \right)$
C. $aL^2 + bL^3$
D. $\frac{1}{2} (aL)^2 + bL^3$

Q.No.3: A particle of mass m moving in the x direction with speed 2v is hit by another particle of mass 2m moving in the y direction with speed v. If the collision is perfectly inelastic, the percentage loss in the energy during the collision is close to: **JEE 2015**

A. 44% **B.** 50% **C.** 56% **D.** 62%

Q.No.4: A particle A of mass m and initial velocity u collides with a particle B of mass $\frac{m}{2}$ which is at rest. The collision is head on, and elastic. The ratio of the de-Broglie wavelengths λ_A to λ_B after the collision is: **JEE 2017**

A.
$$\frac{\lambda_{A}}{\lambda_{B}} = \frac{1}{2}$$

B. $\frac{\lambda_{A}}{\lambda_{B}} = \frac{1}{3}$
C. $\frac{\lambda_{A}}{\lambda_{B}} = 2$
D. $\frac{\lambda_{A}}{\lambda_{B}} = \frac{2}{3}$

Q.No.5: It is found that if a neutron suffers an elastic collinear collision with deuterium at rest, fractional loss of its energy is p_d ; while for its similar collision with carbon nucleus at rest, fractional loss of energy is p_c . The values of p_d and p_c are respectively: **JEE 2018**

- **A.** (0, 0)
- **B.** (0, 1)
- **C.** (.89, .28)
- **D.** (.28, .89)

Q.No.6: A particle is moving in a circular path of radius a under the action of an attractive potential $U = -\frac{k}{2r^2}$. Its total energy is : **JEE 2018**

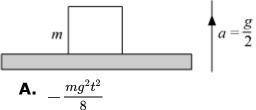
A. Zero
B.
$$-\frac{3}{2} \frac{k}{a^2}$$

C. $-\frac{k}{4a^2}$
D. $\frac{k}{2a^2}$

Q.No.7: In a collinear collision, a particle with an initial speed v_0 strikes a stationary particle of the same mass. If the final total kinetic energy is 50%

greater than the original kinetic energy, the magnitude of the relative velocity between the two particles, after collision, is : **JEE 2018**

A. $\frac{\nu_0}{2}$ B. $\frac{\nu_0}{\sqrt{2}}$ C. $\frac{\nu_0}{4}$ D. $\sqrt{2} \nu_0$


Q.No.8: Three blocks A, B and C are lying on a smooth horizontal surface, as shown in the figure. A and B have equal masses, m while C has mass M. Block A is given an initial speed v towards B due to which it collides with B perfectly inelastically. The combined mass collides with C, also perfectly inelastically. The combined mass collides with C, also perfectly inelastically $\frac{5}{6}$ th of the initial kinetic energy is lost in whole process. What is value of M/m?

Q.No.9: A force acts on a 2 kg object so that its position is given as a function of time as $x = 3t^2 + 5$. What is the work done by this force in first 5 seconds?

- **A.** 850 J
- **B.** 950 J
- **C.** 875 J
- **D.** 900 J

Q.No.10: A block of mass m is kept on a platform which starts from rest with constant acceleration g/2 upward, as shown in fig. Work done by normal reaction on block in time t is:

JEE 2019

JEE 2019

Page 3 of 4

В.	$\frac{mg^2t^2}{8}$
С.	0
D.	$3m \ g^2 t^2$
	8

idyaron carine